【Live!人工知能 】PyTorchで実装するディープラーニング #2
「PyTorchで実装するディープラーニング」というテーマで全6回の講義になりますが、今回は第2講になります。
第1講の動画はこちら。
https://youtu.be/F-BcLtvZX6g
フレームワークPyTorchを使ってディープラーニングを構築し、最後にはWebアプリとしてデプロイします。
講義で使用する教材はこちら。
https://github.com/yukinaga/lecture_pytorch/tree/master/lecture1
1回30-60分程度の講義になりますが、講義の予定は以下の通りです。
第1講 イントロダクション
第2講 PyTorchで実装する簡単なディープラーニング
第3講 PyTorchの様々な機能
第4講 畳み込みニューラルネットワーク(CNN)
第5講 再帰型ニューラルネットワーク(RNN)
第6講 AIアプリのデプロイ
PyTorchを使用してモデルを構築・訓練し、最終的にはWebアプリとして公開します。
Pythonがはじめての方は、以下のノートブックでPythonの基礎を予め把握しておくことをお勧めします。
https://github.com/yukinaga/lecture_pytorch/tree/master/python_basic
今のところ、毎週月曜日の21時に講義を行う予定です。
講師: 我妻幸長
「ヒトとAIの共生」がミッションの会社、SAI-Lab株式会社の代表取締役。AI関連の教育と研究開発に従事。
東北大学大学院理学研究科修了。理学博士(物理学)。
興味の対象は、人工知能(AI)、脳科学、シンギュラリティなど。
オンライン教育プラットフォームUdemyで、4万人近くにAIを教える人気講師。
著書に、「はじめてのディープラーニング」「はじめてのディープラーニン2」(SBクリエイティブ)、「Pythonで動かして学ぶ!あたらしい数学の教科書 機械学習・深層学習に必要な基礎知識」(翔泳社)。共著に「No.1スクール講師陣による 世界一受けたいiPhoneアプリ開発の授業」(技術評論社)。